FNPL BPM System Readout Software

Jason Wennerberg
Fermi National Accelerator Laboratory

March 2, 2004

Abstract

This note describes the software created to facilitate the readout of the FNPL beam position
monitor system on a Linux platform.

1 Introduction

The beamline of the A0Q photoinjector at Fermilab is equipped with button beam position monitor
(BPM) electromagnetic pickup stations. BPM read-out electronics, developed and manufactured
at DESY, are used to acquire the beam position and orbit data. Figure 1 gives an impression of

A0 Beamline with Button BPM's BPM 6
BPM 0 BPM 1 BPM 2 (NC) BPM 3 BPM 4 BPM 5

[[|
-

[[
= == = ==

Delay Lines

Rerﬁote
D Server PC Switch

—

SEDPClInterface

Figure 1: Overview of the BPM system of AQ

the BPM hardware at A0. The stsyem now has 8 BPM’s. Most of the BPM electronics hardware
is concentrated in two 19” SEDAC (SETrial Data ACquision) crates. They keep all analogue and
digital electronics, as well as a serial link to the server PC.

The existing software is injorb was written in Visual Basic for the Windows operating system.
All software made for monitoring BPM’s on the Linux OS are based on this software and a library
written by Manfred Wendt of DESY called SedPc.

2 New software Operation

The new software is called oobpmread and was written December 2003 in the C language. It is run
via the controll panel with the following switches available:

e -d: run and write debugging messages to screen

e -i: The number of reads to perform

e -f: file name for output

e -s: selects which BPM(1-8) to read

e -q: quiet mode: runs with no output to screen

e -a: used instead of -s to read all BPM’s

e -w: sets the number of times to poll the DATA READY bit before giving up

e -I: do not initialize

For example, to read all the BPMs once and save it to a file called 'data.bpm’ one would type
‘oobpmread -a -i 1 -f data.bpm’ in the terminal. To read a single BPM (BPM2) 10 times and write
it to the file ’data.bpm2’ one would type ’oobpmread -s 2 -i 10 -f data.bpm2’.

When the program is run with simply -a, the BPM’s are initialized and ready to go. Single
BPM'’s can then be read and each individual read will be written to screen and to the file as defined
by -f. The statistical average computed over ¢ reads will also be written to the screen.

A package that mimics the old software display was also created. It is called py_bpm_display.py
and is obviously a Python script. This package interacts with the BPM’s by making system calls
to oobpmread and writing the data to files. It then uses these files to display the data in graphical
form. This program has a display of position vs. time at the top of the display, with 8 buttons to
select which BPM to read. It also has a two bar graphs which display the x and y values of each
BPM for the current read. Other buttons are available to save the data, change the scales of the
display and use a reference orbit. Figure 2 shows a screen shot.

3 New Software Overview

The procedure for reading all beam position monitors is outlined in the paper in reference [1]. Here
is listed a short summary of the general procedure assuming you are starting from scratch and need
to initialize the BPM’s. In this case you must run oobpmread with the switch -a for ’all’.

1. The program is run via the command line with options

2. The BPMs are initialized by reading the information about their addresses, constants, etc.
from a file

3. The Sed crate is initialized using the function 'SedIni’ from SedPc

+ | BPM Orbit status display =
BPh1

T T T T
o 10 20 30 40
BPM1
#:1.646 mm
y: 1.578 mn

BPM1 BPMZ BPM3 BPM4 BPM5 BPMB BPM7 BPM3 | Save Set y range Close

BPMx BPMy Save history
o = Save Reference Orbit
2 2 Use Ref Don't Use Ref
4 | . | | Madify Scale
o | o v
| | | 1 :

1 L T L T 1 T T T
8 5 4 6 8

T T T T T T :
2 4 &
“‘/geaﬁ [EnH| {[m]| [B jasonw@aopispitefire7.~ |1 BPM Orbit status display__ | e Mar 02
| | - [Fi[Siashdot: News for nerds, stuff | (O 2e0em |

Figure 2: BPM Display monitor

4. Test for communication with the crate

5. Initialize the ADD module. The procedure for this is in table 5 of reference [1] and in section
6.1

6. ADC module is initialized and attenuation is set. This procedure is also listed in table 5 of
reference [1] and in section 6.2

7. Clear overspeed bit
8. Clear register
9. Poll data ready bit on ADD to wait for DATA READY
10. Read data and check for saturation bit
11. Check to see if sum of E values (see reference [2]) is between min and max values (400 - 800)

12. If sum of E is not acceptable or saturated set bad attenuation flag for that BPM and go back
to reinitialize the ADD and ADC and set new attenuation (increment by 1 or -1)

13. If sum of E is acceptable keep data and stop

4 Single Bunch Readout

There is a desire to be able to read and record single bunch readings in the BPM system. This is
difficult only because of the need to set the individual attenuations of each of the BPM’s. The new

software tentatively solves this problem by keeping a file up to date with the last known ’good’
attenuation value. This is good as long as the beam does not change significantly in which case
the program auto corrects however takes longer to read the devices. In order to read a single bpm
oobpmread must first be run with the switch -a to initialize if the BPM’s need to be initialized. It
is a good idea to initialize the BPM’s if the beam has been off since the last time they were read
out. After the initialization single BPM’s can be read using the -s switch in oobpmread.

5 Remote Operation

Remote monitoring of the BPM system is possible by conecting to aOpi-spitefire6.fnal.gov via tel-
net with a CryptoCard. If you don’t have an account on aQpi-spitefire6.fnal.gov that matches a
kerberos principal, something else will have to be worked out.

Once connected to the system the program oobpmread can be found in /home/jasonw/BPM /originals
and run as discussed in section 2.

The program py_bpm display.py can be found and run in directory /home/jasonw by typing
'python2.3 py_bpm_display.py &’ as long as you have an X client running.

6 Software Details

Table 1 outlines the commands needed to initialize the BPM modules. They are explained further
in sections 6.1 and 6.2.

‘ module ‘ register ‘ action ‘ value ‘ comment ‘
ADD | BSA+ 7 | write 0 | switch to SEDAC OPERATION
ADD | BSA+12 | write 0 | reset RELEASE MODE
ADD | BSA+10 | write 0 | switch to PROGRAM-CONTROLLED RELEASE MODE

ADD | BSA+ 9 | write 254 | set ADD = 255-254 =1

ADD | BSA+ 8 | write set CLEAR & START

ADD | BSA+15 | write clear OVERSPEED

ADD | BSA+13 | write set RELEASE MODE

ADC | BSA+ 3 | write reset TRIGGER-FLAG

ADC | BSA+ 1 | write set TRIGGER = INTERNAL

ADC | BSA+ 2 | write reset OVERLOAD-FLAG

ADC | BSA+ 0 | write set ATTENUATOR = n dB (n = 0...63)
ADD | BSA+15 | write clear OVERSPEED

ol o, O 00 O

Table 1: Initialization commands.

Tables 2 and 3 give further information on the ADC and ADD modules.

register ‘ action ‘ value ‘ comment
BSA+0 | write n | set ATTENUATOR = n dB (n = 0...63)
BSA+1 | write n | n = 0: set TRIGGER = GATE (int. trigger with gate)
n = 1: set TRIGGER = INTERNAL
n = 2: set TRIGGER = EXTERNAL
BSA+2 | write 0 | reset OVERLOAD-FLAG
BSA+3 | write 0 | reset TRIGGER-FLAG
QO0:H| 1dB
Q1l:H| 2dB
Q2:H| 4dB
Q3:H| 8dB
Q 4: H | 16 dB
Q 5 H | 32dB
Q 6: ' H | INTERNAL-TRIGGER-FLAG set by an int. trigger event
BSA+ 0 Q 7: H | EXTERNAL-TRIGGER-FLAG set by an ext. trigger event
Q 8: H | TEMPERATURE > 40° C
Q 9: H | TEMPERATURE > 50° C
Q10: H | TEMPERATURE > 60° C
Q11: H | TEMPERATURE > 70° C
Q13: H | OVERLOAD-FLAG, attenuation set to 63 dB
Q14: L | GATE-MODE
Q15: H | TRIGGER-MODE: EXTERNAL
Q15: L | TRIGGER-MODE: INTERNAL

Table 2: Command reference of the ADC-module.

‘ register ‘action

value ‘

comment

BSA+ 6 | write 0 | switch to uP OPERATION
BSA+ 7 | write 0 | switch to SEDAC OPERATION
BSA+ 8 | write 0 | set CLEAR & START
BSA+ 9 | write n | set AD D = 255-n (# of additions as 1st-complement value)
BSA+10 | write 0 | switch to PROGRAM-CONTROLLED RELEASE MODE
BSA+11 | write 0 | switch to EXTERNAL RELEASE MODE
BSA+12 | write 0 | reset RELEASE MODE
BSA+13 | write 0 | set RELEASE MODE
BSA+15 | write 0 | clear OVERSPEED & test INPUT-DATA
Q 4: H | EXTERNAL RELEASE MODE active
Q 5: H | CONNECTED
BSA+10 | read | Q 6: H | uP-MODE
Q 6: L | SEDAC-MODE
Q 7: H | DATA READY
Q0...13 | DATA left BPM-electrode(4)
BSA+12 | read | Q14: H | OVERSPEED left BPM-electrode(4)
Q15: H | OVERLOAD left BPM-electrode(4)
Q0...13 | DATA right BPM-electrode(3)
BSA+13 | read | Ql14: H | OVERSPEED right BPM-electrode(3)
Q15: H | OVERLOAD right BPM-electrode(3)
Q0...13 | DATA down BPM-electrode(2)
BSA+14 | read | Q14: H | OVERSPEED down BPM-electrode(2)
Q15: H | OVERLOAD down BPM-electrode(2)
Q0...13 | DATA up BPM-electrode(1)
BSA+15 | read | Ql4: H | OVERSPEED up BPM-electrode(1)
Q15: H | OVERLOAD up BPM-electrode(1)

Table 3: Command reference of the ADD-module.

6.1 Initializing the ADD module

Initialization of the ADD module is performed as follows where BSA refers to the Base address on

the ADD:

1. Set SEDAC OPERATION ON by writting 0 to BSA+7

2. Reset release by writting 0 to BSA+12

N ok W

There is a 9000 microsecond programmed delay in between each write for the hardware to keep

up.

Set program controlled release by writting 0 to BSA+10

Set ADD = 1st complement value so that 255 = 255-255 = 0 by writting 255 to BSA+9
Set Clear by writting 0 to BSA+8

Set release by writting 0 to BSA+13

Reset OVER-SPEED and test INPUT-DATA by writting 0 to BSA+15

6.2 Initializing the ADC and setting the attenuation

Initialization of the ADC module is performed as follows where BSA refers to the Base address on
the ADC:

1. Reset trigger flag by writting 0 to BSA+3

2. Set trigger to internal by writting 1 to BSA+1

3. Reset overload flag by writting 0 to BSA+2

4. Set attenuation by writting attenuation value to BSA+0

5. Read back attenuation and compare for good measure

6.3 Data Acquisition

Data aqusition is performed by looping over the commands in table 4

‘ register ‘ action ‘ value ‘ comment

BSA+ 8 | write 0 set CLEAR & START
repeat until

BSA+10 | read mask Q7 Q7 = H (DATA READY)

BSA+15 | read | Q0...Q13: up BPM-electrode(1) Q14:

BSA+14 | read | Q0...Q13: down BPM-electrode(2) OVERSPEED .

BSA+13 | read | Q0..Q13: right BPM-electrode(3) QL5: acquire data

BSA+12 | read | Q0...Q13: left BPM-electrode(4) OVERFLOW

Table 4: Acquire the measured data of the ADD-module.

6.4 Data Post-processing

Data post-processing is required to compute the normalized horizontal and vertical beam displace-
ment Ay and A, from the four acquired signal values of the electrodes F;:

E,—E
Bat Bs M
FE, — E
Aru == kv#
Ey + E5

The calibration factor (so-called monitor constant) (ky, k) varies for different geometries of the
BPM pickup. E; in eqn. (1) are the modified mean-values of the acquired electrode signals F:
The mean-value is computed according to the ADD-values n, set at the BSA+9 registers of the
ADD-modules.

This mean-value E; has to be modified for two aspects, the difference of the cable attenuation in
the delay-line and the nonlinearities of the electronics at lower levels:

E; = ka, B + 10

First order compensation of the nonlinearities is done by simply adding a “10” to each of the
four digital values.

All the constants kp, ky, Katt;, ... are kept in a file that is read into the program during the
initialization process.

References

[1] K. Desler, J. Neugebauer, R. Neumann, F. Wedtstein, and M. Wendt, “Programming the A0
BPM System,” Not published.

[2] K. Desler, R Neumann, and M. Wendt, “Introduction to the A0 BPM System,” Not published.

